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SUMMARY

The mRNA-based therapeutics, notably mRNA vaccines, represent a new era of powerful tools to combat 
various diseases. However, the relatively low translation efficiency of exogenous mRNA often limits its 
wide application. Here, we propose a computational framework called UTailoR (UTR tailor), which signifi-

cantly improves the challenge by optimizing 5 ′ UTR sequences based on a two-step artificial intelligence 
strategy. We first develop a deep-learning-based discriminative model for predicting mRNA translation effi-

ciency with 5 ′ UTR sequences and then present a generative model to generate optimized 5 ′ UTR sequences, 
which are designed to be highly close to the original sequences but predicted to result in high translation ef-

ficiency. The experimental results show that the UTailoR-optimized sequences outstrip the corresponding 
original sequences by ∼200%. This work provides an efficient and convenient method for mRNA 5 ′ UTR opti-

mization, which can be easily accessed online.

INTRODUCTION

In recent years, mRNA-based therapeutics, notably mRNA vac-

cines, have been extensively utilized in the treatment of various 

diseases, including cancer, cardiovascular disease, and infec-

tious diseases. 1,2 Compared with conventional approaches, 

mRNA-based therapeutics offer enhanced safety profiles, accel-

erated design and production processes, as well as reduced 

costs. 3,4 However, one major challenge limiting the widespread 

application of this therapeutics is that the exogenous mRNAs 

within the human body often show low translation efficiency 

(TE). 5 Therefore, it is quite important to develop in silico ap-

proaches to optimize mRNA sequence to improve its translation 

efficiency without altering the corresponding protein sequence.

mRNA sequence consists of coding sequence (CDS) and un-

translated region (UTR). Currently, the optimization of CDS has 

been extensively investigated, encompassing methods based 

on codon optimality theory 6 as well as those based on deep 

learning. 7 However, it is widely acknowledged that mRNA trans-

lation efficiency is influenced not only by the CDS but also by the 

UTR, especially the 5 ′ UTR sequence as it directly impacts ribo-

some recruitment and binding, serving as a primary determinant 

of translation efficiency. 8–10 However, due to the limited under-

standing of the function of 5 ′ UTR, few studies on its optimization

have been developed. Currently, there are two main strategies 

for optimizing 5 ′ UTR. One is based on prior knowledge, that 

is, utilizing known 5 ′ UTRs with high translation efficiency. 11 

The other is a genetic algorithm-based approach, which can iter-

atively evolve 5 ′ UTR sequences to obtain enhanced translation 

efficiency. 12 However, both methods aim to obtain a small num-

ber of universally applicable sequences while disregarding gene-

specific differences and sequence information. Consequently, 

they often fail to achieve optimal performance. In light of this lim-

itation, it becomes necessary to develop an optimization method 

capable of designing distinct 5 ′ UTR sequences with high mRNA 

translation efficiency tailored for specific genes.

In recent years, deep learning methods have been extensively 

applied to biological and medical problems. Deep learning 

methods have made breakthrough progress in numerous tran-

scription and translation-related issues, including transcription 

start site prediction, 13 transcription factor prediction, 13 and 

mRNA degradation prediction, 14 and have now become power-

ful tools for solving various biological problems. The massively 

parallel reporter assay (MPRA) is a method based on high-

throughput sequencing, which can simultaneously measure the 

translation efficiency of hundreds of thousands of mRNA se-

quences encoding the same reporter gene but with different 

UTRs. 15 MPRA enables the acquisition of a large dataset
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consisting of 5 ′ UTR sequences and their corresponding transla-

tion efficiency values, 16 facilitating the application of deep 

learning methods to the problem of translation efficiency. One 

previous study utilized this dataset to develop deep learning 

models for predicting translation efficiency based on the 5 ′ 

UTR sequence, which demonstrated excellent performance 17 ; 

however, it only provided a small number of universally appli-

cable sequences instead of gene-specific distinct 5 ′ UTR se-

quences, which limited the translation efficiency of most 

mRNAs. In this study, we propose a two-step computational 

framework called UTailoR to solve the aforementioned problem. 

We draw inspiration from generative adversarial network princi-

ples 18 to train a discriminative model that predicts translation ef-

ficiency, which thereby guides us to develop a generative model 

to generate 5 ′ UTR sequences that are highly close to the original 

ones but with enhanced translation efficiency. Compared with 

conventional approaches, UTailoR employs deep learning stra-

tegies to explore sequence features associated with high trans-

lation efficiency while generating tailored 5 ′ UTR sequences for 

specific genes, which effectively preserves the inherent charac-

teristics of the original sequence and exhibits enhanced versa-

tility. 19 Ultimately, we develop an online tool for optimizing 

mRNA 5 ′ UTR sequences, which can be accessed freely at 

http://www.cuilab.cn/utailor.

RESULTS

The discriminative model accurately predicts 

translation efficiency

Currently, there have been some deep-learning-based methods 

for predicting translation efficiency. 16,17,20,21 However, these 

methods address multiple downstream tasks, resulting in large 

parameter sizes and computational challenges during model 

training. Here, we developed a lightweight model specifically de-

signed for predicting mean ribosome loading (MRL). This model 

solely utilizes the encoded features of the 5 ′ UTR sequence as an 

input, which undergo three layers of residual-connected convo-

lutional layers, one Gate Recurrent Unit (GRU) layer, and three 

residual-connected fully connected layers to output predicted 

MRL scores (Figure 1A), which serve as an indicator for charac-

terizing the translation efficiency of mRNA sequences. 22,23 

After optimizing hyperparameters and weights (see STAR 

Methods), our model achieved performance comparable to the 

current state-of-the-art methods (Table 1), with the Spearman’s 

correlation coefficient between predicted and actual values 

reaching up to 0.878 (Figure 1B; Table S3). Meanwhile, the 

running time of our model is approximately 50% shorter than 

that of the 5 ′ UTR LM method based on a large language model 

(Figure 1C; Table S3). Subsequently, we assessed our model us-

ing different datasets (Table 2). The results demonstrated its 

robust performance across various MPRA datasets (Figure 1D; 

Figure S2). Notably, despite being trained on enhanced green 

fluorescent protein (EGFP) data from the HEK293T cell line, our 

model exhibited strong performance on the yeast MPRA data-

set, indicating that the impact of 5 ′ UTR sequences on transla-

tion efficiency can be generalized across genes and even spe-

cies. 24 Nevertheless, no significant correlation was observed 

between the predicted values and the true values for all methods

on the Ribo-seq dataset (Figure 1D). We postulate that this 

discrepancy may stem from the absence of consistent control 

in CDS regions within the Ribo-seq data, thereby resulting in 

translation efficiency being influenced by both CDS and

UTR. 25–27

In addition, we used Shapley additive explanations (SHAP) to 

evaluate the importance of each input feature and paid attention 

to how the most important features affect the prediction results. 

The results revealed that most of the top-ranked features were T 

and G nucleotides upstream of the CDS region (we define the 

first position upstream of the start codon as ‘‘1’’ and the second 

position as ‘‘2,’’ and so on), exerting a negative influence on 

translation efficiency (Figure 1E; Figure S3). This aligns with ex-

isting knowledge, as ATG in the UTR forms an upstream open 

reading frame that hinders recognition of the main open reading 

frame by the ribosome, thereby reducing translation efficiency. 9

The generative model generates optimized 5 ′ UTR 

sequences with higher MRL scores

As previously mentioned, the current general approach to opti-

mizing 5 ′ UTR sequences is to search for ‘‘universally appli-

cable’’ sequences without considering the information of the 

original UTR sequence for specific genes. 29,30 Therefore, these 

methods limit the exploration of higher translation efficiency se-

quences to some extent. So here we attempted to develop a 

method that could generate optimized sequences with 

enhanced translation efficiency while maintaining similarity to 

the original reference sequence as much as possible. Ultimately, 

we developed a special autoencoder-based generative model, 

which we call the ‘‘Generative Autoencoder’’ (Figure 2A). The 

loss function of this model comprises two components: the 

reconstruction loss ensures that the generated sequence closely 

resembles the original sequence, while the RL (representing 

‘‘ribosome loading’’) loss guides the model in producing se-

quences with high MRL scores (see STAR Methods).

After appropriately adjusting the weights of the two parts of the 

loss function and training the model, the model achieved the ex-

pected results (Tables S4 and S5). As the weight of the RL loss 

was increased, the model tended to generate sequences with 

higher MRL scores (Figure 2B; Figure S4; Table S6). Concur-

rently, the results of the t-distributed stochastic neighbor 

embedding (t-SNE) dimensionality reduction analysis showed 

that the generated sequences were more similar to the original 

sequences than the known high MRL sequences (p < 0.0001, 

Student’s t test, Figure 2C; Figure S5). To sum up, the model 

has indeed learned rules affecting translation efficiency and 

can generate entirely new high-efficiency sequences based on 

these rules, rather than attempting to find a sequence in known 

high-efficiency sequences most similar to the query sequence.

Next, we evaluated the differences between the generated se-

quences and the original sequences. For most sequences, the 

generative model only changed 4–10 nucleotides, with the 

most common conversions being T-to-A and C-to-A 

(Figure 2D). Ultimately, the adenine content of the optimized 

sequence increased from the original 17.1% to 41.4% across 

all mutated sites (Figure 2E; Table S7), which was consistent 

with the bias of the discriminative model for adenine in the 

feature importance analysis in Figure 1E.
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The generative model-optimized 5 ′ UTR sequences 

enhance translation efficiency

To validate the computational results generated by our genera-

tive model, we selected the three pairs of sequences with the 

highest predicted translation efficiency improvement for experi-

mental verification (Table S1). We transfected these UTR-EFGP 

plasmid into HEK293T cells, HeLa cells, and HUVECs, respec-

tively, and then evaluated the fluorescence intensity. The results 

revealed comparable trends across all tested sequences and 

cell lines (Figure 3A; Figures S6 and S7). The fluorescence inten-

sity of cells transfected with the original sequence and optimized 

sequence (here named as ‘‘Ori-cell’’ and ‘‘Opt-cell,’’ respec-

tively) reached its peak at 36–48 h after transfection 

(Figure S8), and the fluorescence intensity of Opt-cell was signif-

icantly higher than Ori-cell (p < 0.0001, Student’s t test, 

Figures 3A and 3B; Figures S6 and S7; Table S8). Then, western 

blot was applied to quantitatively measure the expression level 

of EGFP in HEK293T cells. The protein expression level of

EGFP in Opt-cell was approximately twice that in Ori-cell 

(p < 0.001, Student’s t test, Figures 3C and 3D; Figure S9) 

consistent with the fluorescence intensity analysis. To clarify 

whether the difference in EGFP protein expression levels was 

due to different transfection efficiencies or differences in tran-

scriptional levels, we adopted real-time quantitative PCR to eval-

uate the EGFP mRNA content in each group of cells. The results 

showed that there was no significant difference in mRNA expres-

sion levels between Ori-cell and Opt-cell (Figure 3E; Table S9), 

indicating that the difference in EGFP expression was mainly 

due to differences at the translational level.

Finally, we attempted to optimize sequences other than EGFP 

with UTailoR to validate its value in practical applications. We 

carried out the optimization procedure on the UTR sequence 

of hepatitis B virus core antigen and compared the translation 

efficiency of the original sequence and the optimized sequence 

in HEK293T cells. Moreover, we examined the translation 

efficiency after replacing the original UTR sequence with the

Figure 1. Structure and performance of the discriminative model in the UTailoR framework

(A) Diagram illustrating the architecture of the discriminative model. One-hot encoded features undergo one-dimensional convolution and go through GRU units 

successively, where the number of GRU units corresponds to the length of the convolutional features. The output from the final GRU unit serves as input for fully 

connected layers.

(B) Performance comparison of various models on a variable-length test set derived from HEK293T cells. Error bars represent standard deviation calculated from 

10 experimental results.

(C) Comparative analysis of computational speed across different models. A total of 100 randomly selected sequence features are individually inputted into each 

model, and the aggregate time taken by each model is recorded over 10 experiments. Data are represented as mean ± SD.

(D) Heatmap illustrating the Spearman’s correlation coefficient between predicted and measured translation efficiency for each method across 5 datasets. All 

models were trained using Sample MPRA dataset.

(E) The top 20 features ranked by absolute mean value of SHAP value, and the relationship between the feature value and SHAP value for each feature.
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human alpha globin UTR sequence, which is a prevalently em-

ployed UTR optimization approach at present. The results 

demonstrated that, in the case of no significant difference in 

transfection efficiency (Figure S10), the translation efficiency of 

the optimized group was more than twice that of the original 

group (Figure 3F; Figure S11). Notably, compared with the hu-

man alpha globin UTR sequence, the translation efficiency of 

the optimized group also increased by approximately 40% 

(Figure 3G). This part of results support that UTailoR can be 

generalized to common sequences and its effect is superior to 

the currently widely utilized UTR optimization methods.

In summary, we first announced that the UTR sequences opti-

mized by UTailoR exhibit higher translation efficiency than the 

original sequences. Importantly, the improvement in translation 

efficiency is greater than that of the commonly used universal 

UTR at present. This further confirmed the reliability of the calcu-

lation results of our model.

Develop the online tool for optimizing 5 ′ UTR sequences 

In order to make the UTailoR algorithm easier to apply, we have 

developed an online tool, which can be freely accessed at http:// 

www.cuilab.cn/utailor. UTailoR accepts 5 ′ UTR sequences with 

lengths ranging from 25 to 100 nt as input, first predicts their 

translation efficiency, and then devises a unique optimization 

scheme for each sequence (Figure 4A). For the 5 example 5 ′ 

UTR sequences, the entire process takes less than 30 s, 

rendering it more convenient and efficient compared to genetic 

algorithms or other deep-learning-based methods. 7,21,31 The re-

sults included the original sequence, the optimized sequence, 

and their respective MRL scores (Figure 4B). We utilized both 

fixed-length (50 nt) and variable-length (25–100 nt) datasets to 

train two discriminative prediction models in order to enhance 

result accuracy. For the fixed-length model, input sequences 

longer than 50 nt will be processed using the last 50 nt, whereas 

those shorter than 50 nt will have padding added on the left side, 

which was similar to the method we handle sequences for the 

variable-length model.

DISCUSSION

In this study, we introduce an innovative 5 ′ UTR sequence opti-

mization strategy for mRNA-based therapeutics. In contrast to 

conventional approaches, our method tailors individualized 

optimization schemes for each UTR sequence, offering 

enhanced flexibility while preserving the original sequence fea-

tures to mitigate potential adverse effects of excessive modifi-

cations to the UTR. This advancement is enabled by deep 

learning technology, which not only validates existing human 

knowledge 8,10 but also captures previously unnoticed patterns. 

We anticipate that insights gained from deep learning will 

further advance our understanding of the role of the 5 ′ UTR in 

translation efficiency.

Regarding the 5 ′ UTR sequence optimization issue, the uORF 

theory 9 and Kozak sequence 32 are representative achievements 

of human knowledge. We discovered that the output results of 

UTailoR in the test set were completely devoid of uORFs, which 

is in accordance with our understanding. Similarly, in the 

sequence preferences exhibited by UTailoR, the A at the third 

position upstream of the start codon (3-A) was strongly 

preferred, which aligns with the characteristics of the Kozak 

sequence. Nevertheless, in the optimized outcomes, it was chal-

lenging to identify typical Kozak sequences. This implies that the 

Kozak sequence is not necessarily the sole solution, and 

customizing unique UTRs for each sequence can achieve better 

results. This serves as an illustration of how deep learning 

methods surpass human knowledge.

From computational standpoint, UTailoR is capable of opti-

mizing 5 ′ UTR sequences within 100 nt only. According to the 

research by Sample et al., 16 this length merely covers 29% of hu-

man 5 ′ UTRs. However, on the one hand, 5 ′ UTR sequences in 

bacterial and viral genomes are relatively shorter, resulting in 

more UTR sequences being covered. On the other hand, existing 

studies have confirmed that the region near the start codon of 5 ′ 

UTRs has a significant impact on translation efficiency. 33,34 

Therefore, for UTR sequences longer than 100 nt, optimizing 

the 100 nt sequence upstream of the start codon is a reasonable 

and effective solution. In summary, we are convinced that 

UTailoR is sufficient to solve the majority of 5 ′ UTR optimization 

problems.

Although UTailoR has achieved the state-of-the-art perfor-

mance, our research still possesses limitations. One unresolved 

matter is how to understand the optimization process of UTailoR. 

The MPRA dataset reveals a series of 5 ′ UTR sequences with 

high translation efficiency, but it seems difficult to find common-

alities among them. Although AI-based methods demonstrate 

their powerful feature extraction capabilities, like many deep

Table 2. Summary of the datasets used in this study

Author Year Biological material Method UTR length TE format Size

Sample et al. 16 2019 HEK293T cell MPRA 50 nt mean ribosome loading 145,251

Sample et al. 16 2019 HEK293T cell MPRA 25–100 nt mean ribosome loading 87,000

Cuperus et al. 28 2017 S. cerevisiae MPRA 50 nt Log2 growth rate 500,000

Cao et al. 12 2021 HEK293T/PC3/muscle Ribo-seq 120 nt RPKM ratio 6,721

Zheng et al. 17 2023 HEK293T/hES cell FACS-seq 100 nt fluorescence intensity percentile 3,179

Table 1. Summary of the baseline discriminative methods

Name Year Method Author PMID

Optimus

5-Prime

2019 CNN P. J. Sample Sample et al. 16

FramePool 2021 CNN+Pooling A. Karollus Karollus et al. 20

MTtrans 2023 CNN+GRU W. Zheng Zheng et al. 17

5 ′ UTR LM 2024 Transformer Y. Chu Chu et al. 21
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learning methods, these patterns are difficult for humans to inter-

pret. In this paper, we merely discussed the characteristics of in-

dividual nucleotides. How specific patterns composed of multi-

ple nucleotides affect translation efficiency remains to be 

further explored.

Another issue is that UTailoR only optimizes 5 ′ UTR se-

quences and does not consider the properties of the CDS re-

gion and 3 ′ UTR. Currently, the optimization methods for the 

CDS region are relatively mature, and UTailoR can be utilized 

concurrently with these methods. Regarding the 3 ′ UTR, there 

is currently limited research. Based on the current understand-

ing of the function of 3 ′ UTRs, predicting the microRNA-binding 

sites in 3 ′ UTRs might be a feasible solution. Simultaneously, in 

addition to the independent effects of each component of 

mRNA on translation efficiency, the overall interaction of the 

full-length mRNA sequence is also worth considering, for 

instance, whether the full-length mRNA forms more complex 

secondary structures and how different secondary structures 

affect translation efficiency and stability, etc. Although it is 

easy to capture the correlation between 5 ′ UTR sequences 

and translation efficiency through the MPRA dataset, the inter-

action effects between 5 ′ UTRs and other parts are difficult to

quantify. Furthermore, under physiological conditions, mRNA 

undergoes various modifications, many of which have been 

verified to influence translation efficiency. 35 Incorporating these 

modifications of mRNA into the prediction of translation effi-

ciency and mRNA optimization strategies is a direction worthy 

of further investigation.

In summary, due to the current lack of data on the influ-

ence of full-length 5 ′ UTR on translation efficiency, it is diffi-

cult to optimize the full-length range of 5 ′ UTR through deep 

learning methods. Previous studies have attempted to opti-

mize the exogenous UTR based on the human genome 

UTR, 36 which is similar to the idea of optimizing the CDS re-

gion. However, a prominent issue is that the CDS region has 

species-specific characteristics due to codon bias, 6,37 while 

there is no similar theoretical support for the UTR. We look 

forward to the emergence of more comprehensive high-qual-

ity datasets in the future, allowing for more in-depth research 

on these issues.

Limitations of the study

In this study, we propose a deep learning approach to optimize 

the mRNA 5 ′ UTR sequence and validate its efficacy through

Figure 2. Structure and performance of the generative model in the UTailoR framework

(A) Schematic diagram of the structure of the generative model, where ‘‘MRL Predictor’’ refers to the discriminative model in Figure 1A. MRL Predictor predicts the 

MRL score of the input sequence and the output sequence and then calculates the RL loss for updating the weight of the generative model.

(B) Comparison of the MRL scores of the generated sequences and the original sequences on the variable-length 5 ′ UTR test set, where λ represents the weight of 

the RL loss in the loss function. The boxplot shows the first quartile and the third quartile of each group of data, and the whiskers represent the upper and lower 

bounds of the data.

(C) The Hausdorff distance from optimized sequences to original sequences, and to known high-translation-efficiency sequences in the t-SNE space. 5 random 

samples are taken, with a sample size of 100 for each kind of sequence. Data are represented as mean ± SD, ****p < 0.0001.

(D) Heatmap illustrating the categories of nucleotide substitutions before and after sequence optimization, with the numbers in the boxes denoting the proportion 

of each substitution out of all substitution nucleotides.

(E) Cumulative bar chart showing the proportion of altered nucleotide in original sequences and optimized sequences.
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cellular experiments. However, a primary limitation lies in the fact 

that the investigation focused solely on the impact of the 5 ′ UTR 

sequence itself on translation efficiency, without considering its 

potential interactions with the CDS and the 3 ′ UTR. Furthermore, 

there remains a lack of intuitive interpretation for the features 

identified by the deep learning model that contribute to se-

quences with high translation efficiency.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, Qinghua Cui (cuiqinghua@bjmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Figure 3. UTailoR-optimized 5 ′ UTR sequence enhances the translation efficiency of EGFP

(A) Fluorescence microscopy images of HEK293T cell, taken 24 h after transfection, magnified 400×. BF, bright field.

(B) Statistical analysis of the mean fluorescence intensity in fluorescence microscopy, with 5 fields of view taken from each sample and 3 samples (i.e., Ori1–3 and 

Opt1–3) per group.

(C) Representative western blot image of Ori-cell and Opt-cell EGFP expression, from left to right: Ori1-3 and Opt1-3. NC represents transfection of the empty 

vector as a negative control.

(D) Differences in EGFP expression between Ori-cell and Opt-cell, with 4 samples per group, and the error bars represent the standard deviation.

(E) Differences in EGFP mRNA content between Ori-cell and Opt-cell, with 4 samples per group, and the error bars represent the standard deviation.

(F) Representative western blot image of HBcAg expression. Ori, original HBcAg UTR; HbA, human alpha globin UTR; Opt, optimized UTR by UTailoR; NC, 

negative control.

(G) Differences in HBcAg expression among the three groups of cells, with 4 samples per group, and the error bars represent the standard deviation.

Data are represented as mean ± SD, *p < 0.05, ***p < 0.001, and ****p < 0.0001, Student’s t test (B, D, and E) or one-way ANOVA (G).
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Figure 4. Overview of the online tool

(A) The main program page of UTailoR. The program accepts FASTA format input and can be used to predict the MRL score of input sequences or generate 

optimized sequences.

(B) The results display the page of UTailoR. The output results can be browsed online or downloaded as xlsx format.
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Data and code availability

• This article analyzes existing, publicly available data, accessible at 

https://doi.org/10.1038/s41587-019-0164-5, https://doi.org/10.1101/gr. 

224964.117, https://doi.org/10.1038/s41467-021-24436-7, and https:// 

doi.org/10.1016/j.cels.2023.10.011.

• All data supporting the findings of this study are available within the 

article and its supplemental information.

• All original code has been deposited at http://www.cuilab.cn/utailor/ 

download and is publicly available as of the date of publication.

• Any additional information required to reanalyze the data reported in this 

article is available from the lead contact upon request.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

eGFP Monoclonal Antibody Thermo Cat# F56-6A1.2.3; RRID: AB_889471

FLAG tag Mouse monoclonal antibody Biodragon Cat# B1084

Actin beta Mouse Monoclonal Antibody Biodragon Cat# B1029; RRID: AB_3713074

HRP-goat anti mouse IgG Biodragon Cat# BF03001; RRID: AB_3105782

Chemicals, peptides, and recombinant proteins

Endotoxin free plasmid small extract medium kit TIANGEN Cat# DP118

RNA Easy Fast Animal tissue/cell total RNA Extraction Kit TIANGEN Cat# DP451

DMEM Medium Solarbio Cat# 11995

Trypsin-EDTA solution, 0.25% Solarbio Cat# T1300

BCA Protein Assay Kit Solarbio Cat# PC0020

Penicillin-Streptomycin Liquid Solarbio Cat# P1400

Precast SDS-PAGE Gel 15% Solarbio Cat# PG01510-S

RIPA Buffer Solarbio Cat# R0010

Fetal Bovine Serum Gibco Cat# A5670701

Opti-MEM TM Medium Gibco Cat# 31985070

Lipofectamine TM 3000 transfection reagent Invitrogen Cat# L3000015

HiScript III All-in-one RT SuperMix Vazyme Cat# R333

Taq Pro Universal SYBR qPCR Master Mix Vazyme Cat# Q712

Deposited data

HEK293T cell MPRA dataset Sample et al. 16

S. cerevisiae MPRA dataset Cuperus et al. 28

Human Ribo-seq dataset Cao et al. 12

Human FACS-seq dataset Zheng et al. 17

Experimental models: Cell lines

HEK 293T Peking University N/A

Hela Beyotime Cat# C6330

HUVECs Freemore Cat# 200-0630

Oligonucleotides

h-β-actin-F-5 ′ -TAAGGAGAAGCTGTGCTACGTC-3 ′ TsingkeBiotecnology N/A

h-β-actin-R-5 ′ -TTTCGTGGATGCCACAGGAC-3 ′ TsingkeBiotecnology N/A

h-EGFP-F-5 ′ -CTACCCCGACCACATGAAGC-3 ′ TsingkeBiotecnology N/A

h-EGFP-R-5 ′ -CTTGTAGTTGCCGTCGTCCT-3 ′ TsingkeBiotecnology N/A

Recombinant DNA

Ori-1-EGFP overexpression plasmid HanBio N/A

Ori-2-EGFP overexpression plasmid HanBio N/A

Ori-3-EGFP overexpression plasmid HanBio N/A

Opt-1-EGFP overexpression plasmid HanBio N/A

Opt-2-EGFP overexpression plasmid HanBio N/A

Opt-3-EGFP overexpression plasmid HanBio N/A

HBV-ori overexpression plasmid HanBio N/A

HBV-opt overexpression plasmid HanBio N/A

HBV-HbA overexpression plasmid HanBio N/A

(Continued on next page)

e1 iScience 28, 113544, October 17, 2025

iScience
Article

ll
OPEN ACCESS



EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture

The HEK293T cells, HUVECs, and HeLa cell lines used in this study were cultured in high-glucose DMEM (Cat# 11995) medium sup-

plemented with 10% FBS (Cat# A5670701) and 1× penicillin/streptomycin (Cat# P1400). The cells were maintained at 37 ◦ C in a hu-

midified incubator with 5% CO 2 and were passaged when the confluence reached 70%–80%. Mycoplasma contamination testing 

was performed every six months. All cell lines were accompanied by an authentication report provided by the respective supplier.

METHOD DETAILS

Datasets and data processing

We collected the following three types of datasets (Table 2) in this study.

(1) The MPRA dataset, which includes the data from human 293T cell line published by Sample et al. 16 and the yeast dataset 

published by Cuperus et al. 28 Sample et al. used the Mean Ribosome loading (MRL) to represent the translation efficiency, 

while Cuperus et al. represented the translation efficiency by the growth rate of yeast.

(2) The Ribo-seq dataset, consisting of data from the 293T cell line, PC3 cell line, and muscle tissue dataset collected by Cao 

et al., 12 represents translation efficiency through the ratio of Ribo-seq RPKM to RNA-seq RPKM. Following Cao et al.’s 

approach, we excluded sequences with low Ribo-Seq RPKM or RNA-seq RPKM to ensure sequencing result reliability.

(3) The FACS-seq dataset, which includes the data form 293T and ES cells published by Zheng et al. 17 Zheng et al. used fluores-

cence intensity to represent translation efficiency, and classified the top 5% of UTR sequences as positive samples and the 

bottom 5% as negative samples.

We used one-hot encoding with a total of 5 bits to represent each base, representing A, T, C, G, and pad. For sequences shorter 

than 100 nt, we applied left-side padding to extend them to 100 nt; and for sequences longer than 100 nt, we select the last 100 nt for 

encoding. In summary, all UTR sequences can be depicted as a 2D array with shape (100, 5).

Constructing the discriminative model

We constructed a deep learning model using the functional API of TensorFlow 2.11. The discriminative model takes a sequence 

feature with a shape of (100,5) as input, which is then passed through three residual-connected convolutional layers, followed by 

a gate recurrent unit (GRU) layer and three residual-connected dense layers. Finally, it outputs the predicted MRL score for the 

sequence. The hyperparameters of the neural network were determined using HyperBand optimization technique.

To train the model, we utilized the dataset published by Sample et al. Initially, 10% of the data was randomly selected as the test set 

while the remaining data was divided into an 80:20 ratio to create training and validation sets, respectively. The mean squared error 

was employed as the loss metric for evaluating the model’s performance. The initial learning rate was set to 0.001 during training 

process. If there was no reduction in validation set loss for 5 consecutive epochs, we adjusted the learning rate to 1/10 of its original 

value; furthermore, if there was no further reduction in loss after 12 epochs, we terminated training to prevent overfitting (Figure S1).

Subsequently, we applied Model Soups method to optimize the model’s weights. 38 Specifically, we randomly partitioned the 

training set and validation set, repetitively trained 10 models with identical structures but different weights. These models were 

then ranked based on their performance on the test set and finally averaged their weights using a greedy algorithm to obtain final 

weights for our model.

Optimizing hyperparameters

We used HyperBand to optimize hyperparameters. 39 Initially, 8000 groups of hyperparameters were randomly selected in the hyper-

parameter space. For each group of hyperparameters, we trained 2 epochs, and then drop 2/3 hyperparameter groups with poor 

performance. The remaining hyperparameter groups will be trained 4 more epochs, and then drop 2/3 hyperparameter groups again, 

training 8 more epochs for remaining hyperparameter groups. This procedure was performed until the optimal combination of hyper-

parameters was obtained. The hyperparameter space includes the number of convolution kernels, the size of convolution kernels, the

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python 3.10 N/A https://www.python.org

UTailoR This Paper http://www.cuilab.cn/utailor/download

Graphpad Prism 9.5.1 GraphPad Prism Software, Inc https://www.graphpad.com/features

ImageJ National Institutes of Health https://imagej.net/ij
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output dimension of GRU, the number of fully connected layers, the number of neurons in each fully connected layer, and the acti-

vation function.

Baseline methods

To evaluate the performance of the discriminative model, we conducted comparative analysis with previously proposed methods as 

presented in Table 1. Specifically, we re-implemented Optimus 5-Prime 16 in TensorFlow 2.11 according to the description provided 

by Sample et al. For FramePool 20 and MTtrans, 17 we used the pre-compiled model files provided by their respective authors. As for 

the 5 ′ UTR LM, 21 we obtained the foundational model and appended a fully connected layer to generate predicted MRL scores. 

Notably, all models were retrained on the variable-length MPRA dataset (with only training of the appended fully connected layer 

for 5 ′ UTR LM).

Interpretability of the discriminative model

We used SHapley Additive exPlanations (SHAP) to evaluate the importance of input features. 40 SHAP is developed on the basis of 

game theory, which calculates the marginal contribution of each feature by introducing each feature in a different order. Through the 

marginal contribution, we can get to what extend and how each feature influence on the results, as shown in Equation 1:

SHAP(x) = 
∑n

f = 1

y x ∈ setf − y x∕∈setf

f × 

(
f

n

) (Equation 1)

Where ‘‘SHAP(x)’’ represents the SHAP value of feature x, ‘‘n’’ is the total number of features, ‘‘f’’ represents the rank of features x 

introduced into the model, y x ∈ setf and y x∕∈setf represent the predicted value of the model when feature x is included or not included in 

the feature set, respectively.

Constructing the generative model

The generative model was constructed based on an auto-encoder architecture. It takes a sequence feature of shape (100, 5) as input 

and passes it through three convolutional layers and one fully connected layer to generate a latent vector of length 128. Subse-

quently, the latent vector was reconstructed into a sequence feature with the same shape using a fully connected layer and three 

deconvolutional layers. To make the model have generation capability, we have devised a unique loss function for the model 

comprising two components: reconstruction loss (Equation 2) and RL loss (Equation 3).

RE loss = CCE 
( 
y true ; y pred 

) 
+ BCE 

( 
y true [− 1]; y pred [− 1] 

)
(Equation 2)

RL loss = e MRL(y true ) − MRL ( y pred) (Equation 3)

Where CCE denotes the categorical cross-entropy between the reconstructed vector and the original vector, while BCE denotes the 

binary cross-entropy between the last element of the reconstructed vector and the last element of the original vector, which repre-

sents ‘pad’. In RL loss, MRL(y) refers to the predicted MRL score of vector y by our prediction model. The final form of our loss func-

tion is given by Equation 4:

Total loss = RE loss + λ⋅RL loss (Equation 4)

Where λ serves as a hyperparameter for adjusting weights associated with both parts of losses; based on preliminary experiments, 

we set λ = 100.

Plasmid construction

Select the top 3 pairs of 5 ′ UTR sequences with the most increased MRL scores from the test set and commission Hanbio Biotech-

nology to synthesize the corresponding DNA fragments. Each DNA fragment consists of a 25bp linker sequence, a 50bp 5’ UTR 

sequence, and a 720bp EGFP CDS, resulting in a total length of 795bp (Table S1). For the hepatitis B virus core antigen, the sequence 

is likewise composed of a variable 5 ′ UTR and a consistent CDS region. The length of the final inserted sequence is 784 bp or 765 bp, 

since the length of the HbA-UTR sequence is not in accordance with that of the original UTR sequence of the hepatitis B virus core 

antigen (Table S2). We did not undertake any artificial design for the 3’ UTR sequence. This implies that all the RNA sequence after 

transcription would have a uniform 3 ′ UTR sequence, namely the sequence ranging from the multiple cloning site on the pcDNA3.1 

plasmid to the poly A region. Utilize restriction enzyme digestion to insert the target fragments into the multiple cloning site of the 

pcDNA3.1 vector, then transform DH5α competent cells, and select single clones after culturing for 12 h. After an additional incuba-

tion period of 18 h, collect bacterial suspension and perform plasmid extraction according to the protocol provided in the TIANGEN 

plasmid extraction kit (Cat# DP118).
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Cell transfection

Inoculate 2×10 6 HEK293T cells into 10 cm cell culture dishes and incubate them in DMEM complete culture medium for 48 h. 

Following the recommended dosage in the Lipo3000 transfection reagent (Cat# L3000015) protocol, transfect 10 μg of the corre-

sponding plasmid into each dish of cells. After 24 h, evaluate the fluorescence intensity using a fluorescence microscope and cen-

trifugate cells. For human umbilical vein endothelial cells (HUVECs) and human cervical cancer HeLa cells, we followed the same 

culture conditions as for HEK293T cells, but fluorescence intensity was measured 36 h after transfection.

Relative quantification of EGFP and HBcAg

We divided the collected cells evenly into two parts, which will be used to extract mRNA and proteins respectively. mRNA was ex-

tracted using the TIANGEN RNA extraction kit (Cat# DP451). Take 1 μg of mRNA to perform reverse transcription using Vazyme All-in-

one RT SuperMix (Cat# R333), and then dilute the resulting cDNA product at a ratio of 1:10. Vazyme Taq Pro Universal SYBR qPCR 

Master Mix (Cat# Q712) with primers listed in Table 1 was used for fluorescence quantitative PCR.

Total proteins were extracted from cells using Solabio RIPA lysis buffer (Cat# R0010), and the protein concentration was adjusted 

to 1 μg/ul using the BCA method for Western Blot sample preparation. Electrophoresis was performed using Solabio 15% Precast-

Gel (Cat# PG01510) with 10 μl of sample per well. The PVDF membrane underwent sequential incubation with primary antibody 

against EGFP (Cat# F56-6A1.2.3) and HRP-conjugated goat anti-mouse IgG before being placed on the Bio-rad ChemiDoc XRS+ 

Chemiluminescence Imaging System for chemiluminescence detection. ImageJ software was utilized for quantitative analysis of pro-

tein blot. For the quantification of HBcAg, we followed a similar approach using the FLAG tag Mouse Monoclonal Antibody (Cat# 

B1084) and Actin beta Mouse Monoclonal Antibody (Cat# B1029).

QUANTIFICATION AND STATISTICAL ANALYSIS

The data are displayed as Mean ± SEM in other experimental data. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 were used to 

determine the statistical significance of differences. Differences among the groups were analyzed using Student’s t test or one-way 

ANOVA for multiple comparisons with Bartlett’s test. All statistical analyses were performed with Scipy and Graphpad Prism 9.5.1. 

Visualization of computational experiment results was performed using the Matplotlib and Seaborn libraries in Python, while 

biochemical experiment results were visualized using Graphpad Prism. The web server was built based on Django 4.2.
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